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breakdown shifts to the path IV. This pattern of breakdown, however,

changes completely for d/b = 0.5. For small values of the septa

width s/a, the Pm /A~ now corresponds to the breakdown along

the path V and decreases rapidly. For s/a = 0.4 the breakdown

shifts to the gap edges (path II) and Pm /A~ drops sharply. Then for

s/a > 0.4, the electric field at the septa edges (path IV) becomes the

dominant factor in determining the breakdown power level. Whatever

be the region of breakdown in the DLSG, Pm/A~ increases rapidly

with increasing gap width d/b for s/a < 0.5. The power level also

decreases monotonically with increasing s/a—very slowly when d/b

is small and more rapidly for larger values of d/b.

IV. CONCLUSIONS

We have reported earlier that a Double L-Septa Guide has better

cut-off and bandwidth characteristics than a Double T-Septa Guide

[9], [10]. We have now extended the theoretical study of the DLSG by

calculating the attenuation characteristics, septa-gap impedance and

power handling capability of the dominant TE mode of the guide. The

design data are presented for a wide range of septa parameters. These

characteristics compare favorably with those of the ridged and T-septa

guides and, together with the superior bandwidth, should make the

DLSG a useful broadband transmission medium.
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On the Use of Levin’s T-Transform in Accelerating

the Summation of Series Representing the

Free-Space Periodic Green’s Functions

Surendra Singh and Ritu Singh

Abstract—The Levin’s t-transform is shown to accelerate the summa-
tion of slowly converging series. This is illustrated by application of the
transform to the series representing the free-space periodic Green’s func-
tions involving a single and double infinite summation. Numerical results
indicate that the transform couverges rapidly than a direct summation of

the series. Thus, it provides considerable savings in computation time.

I. INTRODUCTION

The series representing the free-space periodic Green’s function

converges very slowly. This slow convergence results in making the

analysis of periodic structures computationally expensive. In order

to improve the efficiency of the codes, it is essential to employ

methods to enhance the convergence of the Green’s function series.

Recently, a number of investigators [ 1]–[3] have used methods to

reduce the computation time by a considerable amount. In this work,

we show that the use of Levin’s t-transform [4] is able to accelerate

the summation of slowly converging series involving a single and

double infinite summation. The primary advantage of the transform

is that it is relatively free of roundoff errors in the computation of

higher order iterates. In addition to this the transform can be applied

to any slowly converging series without performing any analytical

work prior to its application. The transform is outlined in Section II

with an illustrative example. In Section III, the free-space periodic

Green’s functions are given. The numerical results and conclusion

are presented in Sections IV and V, respectively,

II. LEVIN ‘S t-TRANSFORM

Let S. be the partial sum of n terms of a series such that S. + S

as rt + cc, where S is the sum of the series. The Levin’s t-transform

may be computed as follows:

..

j(-1,(:) (~)(k-’)(sn+t:::sn+t)
&“’(!)(%)(’-l)(s.+,+l’- s.+,) ‘

k=o.1.2 . . . . (1)

The kth order transform, t~ ) or tk (S~ ), gives an estimate of the sum,

S, of the series. An inherent advantage of the t-transform is that the

higher order iterates are computed from the partial sums. Hence, the

accuracy to which the partial sums are computed can be preserved

in the transform computations. This keeps the transform relatively

immune to roundoff errors in comparison to Shanks’ transform [5]

in which higher order iterates are computed from the lower orders

resulting in severe loss of significant digits due to accumulation of

roundoff errors [6]. The transform can be illustrated by applying it
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TAf3LE I
APPLICATION OF LEWN’S t-TRANSFORM TO THE SERIESFOR hr 3

n & = & +.) ~~) *f) $) (0 $)

1
2
3
4
5
6
7
8
9

2.0000000 1.1428572 1.0909091 1.0994152 1.0985777 1.0986093 1.0986133
0.0000000 1.0666667 1,1014494 1.0984458 1.0986129 1.0986135 1.0986127
2.6666667 1.1282053 1.0970465 1.0986667 1.0986135 1.0986123

– 1.3333333 1.0666668 1.0997245 1.0985881 1.0986122
5.0666671 1.1368420 1.0976750 1.0986261

–5.5999999 1.0493511 1.0995084
12.6857157 1.1657153

– 19.3142853
37.5746040

to the divergent Taylor series for ln( 1 + z) when z = 2:

ln3=–~~
p=l

(2)

The result of applying the Levin’s t-transform to the sequence of

partial sums S1, Sz,.. ., Sg is given in Table I. Although not shown in

‘n) = 1.0986125. The result is computedthe table, the last entry is t7
in single precision arithmetic and compared to the

1.0986123 it is accurate to seven digits.

III. PERIODIC GREEN’S FUNCTIONS

The Green’s function for a one-dimensional array

spaced d units apart along the y-axis is given by

+Cc .

exact result of

of line sources

1 H(2) , (k[(~ _ ~’)’ + (y – y’ – pd)2]’/2) (3)G=~%,
p=–cc

where Ho‘2) is the zeroth-order Hankel function of the second kind,

k is the wavenumber of the medium, (x’, y’) is the location of the

reference source and (z, y) locates the observation point. The spatial

domain Green’s function series in (3) converges very slowly for all

combinations of source and observation points. Due to this reason

the spectral domain representation of the Green’s function is often

employed in the numerical analysis of periodic structures with one-

dimensional penodicity. The spectral domain Green’s function is

given by:

where

k=, = {dk’ – (2px/d)2 , k2 > [2p7r/d)2

–j ~(2pn/d)2 – W, lc2 < (2px/d)2.
(5)

The spectral domain Green’s function series converges rapidly for

x # x’ (“off plane” case). This is due to the exponential factor which

aids in the convergence. However, for r = z’ (“on plane” case), the

series in (4) converges very slowly and may take anywhere from

104 to 106 terms to converge. This poses a significant problem since

in a moment method solution repeated evaluations of the Green’s

function series are required. The slow convergence of this series can

make the analysis process computationally expensive. Therefore, it

is imperative to use some means to accelerate the convergence of

the series.

The free-space periodic Green’s function for a two-dimensional

infinite array is given by:

G(T) = ~ ~ ~e-’kz’qlzle-’k”q ‘ (6)
,=-cc q=-m J2Ak=’~

where r is the location of the observation point and it is assumed

without the loss of generality that the reference source is located at
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Fig. 1. Computation time versus 1/eC for the spatial domain Green’s
function series in (3) for (x, y) = (0.4A, 0.3A), d = 0.6A, and J = 0.8m.

the origin. Also, A is the area of the unit cell and

ktpq = (p +Po)kl + (q+ qo)k2

kl = (27r/Dz)2, k, = (27r/Dv )y

ICI and k2 are reciprocal lattice base vectors defined

rectangular lattice, Dz, Dy are the periodicities in the x,,

(7)

(8)

(9)

in (9) for a

y directions,

respectively, pO and q. are the interelement phase shift constants,

and k is the free-space wavenumber. The series has the slowest

convergence as the observation point approaches the source plane,

i.e., as z A O (“on plane” case).

IV. NUMERICAL RESULTS

In this section, we present the results of applying the t-transform

to the parti~ sums of the series given in (3), (4) and (6). Td provide a

comparisori the results from Shanks’ transform and direct summation

of the series are also given. In order to stop the iteration process,

the convergence criterion used in [1] is employed. In this criterion,

e. is the convergence factor and it is provided as part of the input

specification. The reference source is taken to be at the urigin.

Figs. 1–2 show the computation time (on a VAX 6350) vs. l/cc

for the one-dimensional spaiial and spectral domain Green’s function

series, respectively. In each case the t-transform converges to machine

precision in 0.03 seconds. In comparison, the direct sum does not

converge and takes several minutes to run. The corriputation time

vs. 1/~C for the two-dimensional Green’s function series is shown in

Fig. 3. For c. = 10–5, the t-transform converges to a high degree

of accuracy within 0.2 seconds whereas the direct sum takes 250

seconds and does not give comparable accuracy.

V. CONCLUSION

The t-transform significantly accelerates the convergence of the

series representing the one- and two-dimensional periodic Green’s

functions. The numerical results confirm that the t-transform is

effective even in the “on plane” case when the Spectral domain series
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Fig. 2. Computation time versus 1/cc for the spatial domain Green’s

function series in (4) for (z, y) = (0.OA, 0.6A), d = 1.2A, and A = l.Orn.
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Fig, 3. Computation time versus 1/CC for the spatial domain Green’s
function series in (6) for ($. y, z) = (0.6A, 0.6A, O.OA),& = Dv = 0.75A,

Po = go = O,A = I,orn.

have the slowest convergence. This results in a considerable savings

in computation time.
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Computer-Aided Design of a Singly-Matched

(S-M) Multiplexer with a Common Junction

Ji-An Gong and Wai-Kai Chen

Abstract-In this paper, the formulas based on scattering parameters
are presented for the design of a multiplexer composed of n – 1 channel

equaffzers connected either in parallel or in series at a common jnnction

with a 1-Q resistive generator and n – 1 channel complex loads. It
is known as the singly-matched (S-M) multiplexer. A new two-stage

computer-aided design approach is developed for the S-M multiplexer.

A design example of a three-channel singly-matched multiplexer includ-

ing the designs of three ind]vidiral S-M channel equaliz~rs is given to

demonstrate the approach.

I. INTRODUCTION

Many multiplexer design techniques have been developed [1]–[3],

but none of them considers the complex load impedances. With recent

developments in solid-state technology, a pure resistive model of the

load is no longer an adequate representation.

In this paper, a multiplexer configuration consists of n – 1 channel

equalizers connected in either parallel or series at a common junction.

All the loads of the tnultiplexer are assumed to be complex, and

the generator is assumed to be connected in series with a 1-Q

resistor. A multiplexer with a resistive source and complex loads is

called a singly-matched (S-M) multiplexer. Formulas are presented

for either the parallel or series configuration with a common junction.

A new two-stage computer-aided procedure is developed for their

design. At the first stage, each channel equalizer is designed to

be a singly-matched so that the transfer of power from the 1-Q

resistive generator to the channel complex load is maximized over

a prescribed channel frequency band. This is known as a single

broad-band matching problem for which many papers have been

published [4]-[6]. Since the ladder structure is attractive not only

from a practical viewpoint, but also effective as an equalizer in

most applications, in this paper each channel equalizer is assumed

to be a two-port lossless ladder network. The S-M channel equalizer

is realized by optimization matching technique, thereby making it

easier to design a S-M equalizer having different types of responses

(Chebyshev or elliptic) and various passbands (lowpass, bandpass, or

highpass). At the second stage, by using the formulas and existing

optimization techniques. all the element values in the multiplexer

are modified until a good match is achieved at the common input

port over the entire transmission band. Since all the designs are
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