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breakdown shifts to the path IV. This pattern of breakdown, however,
changes completely for d/b = 0.5. For small values of the septa
width s/a, the P,./A2 now corresponds to the breakdown along
the path V and decreases rapidly. For s/a =~ 0.4 the breakdown
shifts to the gap edges (path IT) and P, /)2 drops sharply. Then for
s/a > 0.4, the electric field at the septa edges (path 1V) becomes the
dominant factor in determining the breakdown power level. Whatever
be the region of breakdown in the DLSG, P../A? increases rapidly
with increasing gap width d/b for s/a < 0.5. The power level also
decreases monotonically with increasing s/a—very slowly when d/b
is small and more rapidly for larger values of d/b.

IV. CONCLUSIONS

We have reported earlier that a Double L-Septa Guide has better
cut-off and bandwidth characteristics than a Double T-Septa Guide
[9], [10]. We have now extended the theoretical study of the DLSG by
calculating the attenuation characteristics, septa-gap impedance and
power handling capability of the dominant TE mode of the guide. The
design data are presented for a wide range of septa parameters. These
characteristics compare favorably with those of the ridged and T-septa
guides and, together with the superior bandwidth, should make the
DLSG a useful broadband transmission medium.
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On the Use of Levin’s T-Transform in Accelerating
the Summation of Series Representing the
Free-Space Periodic Green’s Functions

Surendra Singh and Ritu Singh

Abstract—The Levin’s t-transform is shown to accelerate the summa-
tion of slowly converging series. This is illustrated by application of the
transform to the series representing the free-space periodic Green’s func-
tions involving a single and double infinite summation. Numerical results
indicate that the transform converges rapidly than a direct summation of
the series. Thus, it provides considerable savings in computation time.

1. INTRODUCTION

The series representing the free-space periodic Green’s function
converges very slowly. This slow convergence results in making the
analysis of periodic structures computationally expensive. In order
to improve the efficiency of the codes, it is essential to employ
methods to enhance the convergence of the Green’s function series.
Recently, a number of investigators [1]-[3] have used methods to
reduce the computation time by a considerable amount. In this work,
we show that the use of Levin’s t-transform [4] is able to accelerate
the summation of slowly converging series involving a single and
double infinite summation. The primary advantage of the transform
is that it is relatively free of roundoff errors in the computation of
higher order iterates. In addition to this the transform can be applied
to any slowly converging series without performing any analytical
work prior to its application. The transform is outlined in Section II
with an illustrative example. In Section III, the free-space periodic
Green’s functions are given. The numerical results and conclusion
are presented in Sections IV and V, respectively.

II. LEVIN ’S t-TRANSFORM

Let S, be the partial sum of n terms of a series such that S,, — S
as n — oc, where S is the sum of the series. The Levin’s t-transform
may be computed as follows:

i(—l)l(k‘) n+i)“‘“” Sut.
S i n-+k Sntit1 — Snts

L)) )
n+k Sn+z+l "'Sn+z

_0.1.2.--~ L

’

The kth order transform, ti") or t;{Sy ). gives an estimate of the sum,
S, of the series. An inherent advantage of the t-transform is that the
higher order iterates are computed from the partial sums. Hence, the
accuracy to which the partial sums are computed can be preserved
in the transform computations. This keeps the transform relatively
immune to roundoff errors in comparison to Shanks’ transform [5]
in which higher order iterates are computed from the lower orders
resulting in severe loss of significant digits due to accumulation of
roundoff errors {6]. The transform can be illustrated by applying it
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TABLE 1
APPLICATION OF LEVIN’S t-TRANSFORM TO THE SERIES FOR In 3
n =8, # & ™ £ £ &
1 2.0000000 1.1428572 1.0909091 1.0994152 1.0985777 1.0986093 1.0986133
2 0.0000000 1.0666667 1.1014494 1.0984458 1.0986129 1.0986135 1.0986127
3 2.6666667 1.1282053 1.0970465 1.0986667 1.0986135 1.0986123
4 —1.3333333 10666668 1.0997245 1.0985881 1.0986122
5  5.0666671 11368420 1.0976750 1.0986261
6 —5.5999999 1.0493511 1.0995084
7 126857157 1.1657153
8 —19.3142853
9 37.5746040

to the divergent Taylor series for In(1 + z) when z = 2:
In3=- —_— 2)

The result of applying the Levin’s t-transform to the sequence of
partial sums Sy, Sz, - -, S is given in Table I. Although not shown in
the table, the last entry is tg,") = 1.0986125. The result is computed
in single precision arithmetic and compared to the exact resuit of
1.0986123 it is accurate to seven digits.

III. PeriopIC GREEN’S FUNCTIONS

The Green’s function for a one-dimensional array of line sources
spaced d units apart along the y-axis is given by

+oo
G= Y zl,fHé”-(k[(x-x’)2+(y—y’—pd)2]1/2) ©)

p=—00

where Héz) is the zeroth-order Hankel function of the second kind,
k is the wavenumber of the medium, (', y') is the location of the
reference source and (z,y) locates the observation point. The spatial
domain Green’s function series in (3) converges very slowly for all
combinations of source and observation points. Due to this reason
the spectral domain representation of the Green’s function is often
employed in the numerical analysis of periodic structures with one-
dimensional periodicity. The spectral domain Green’s function is
given by:
G = = 1 —rkoy lz—a'| ,—s2pm(y—y’)/d 4
=) Todh € e @

p=—co

where

k p— { V k2 - (2p7r/d\)2a kZ > (2pﬂ-/d)2 (5)
2T =i/ @2pr/d)? — k2, E* < (2pw/d)>.

The spectral domain Green’s function series converges rapidly for
x # z' (“off plane” case). This is due to the exponential factor which
aids in the convergence. However, for r = 2’ (“on plane™ case), the
series in (4) converges very slowly and may take anywhere from
10* to 10° terms to converge. This poses a significant problem since
in a moment method solution repeated evaluations of the Green’s
function series are required. The slow convergence of this series can
make the analysis process computationally expensive. Therefore, it
is imperative to use some means to accelerate the convergence of
the series.
The free-space periodic Green’s function for a two-dimensional
infinite array is given by:
+oo  4oo 1 . el E
v — —Jkapqlz| ,—iKipg T
G(T) = Z Z me pel*le pq (6)

P=—00 g=—00

where r is the location of the observation point and it is assumed
without the loss of generality that the reference source is located at
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Fig. 1. Computation time versus 1/e. for the spatial domain Green’s
function series in (3) for (., y) = (0.4X,0.31),d = 0.6, and A = 0.8m.

the origin. Also, A is the area of the unit cell and

k. :{ A% k% ~ |ktp'1|2> k> ]ktPQ| (7)
w —J Vv |ktpq|2 -k k< Iktpql

kipg = (p+ po)ki + (g + go)ks ®)
ki =(2n/D.)&, k2= (2n/Dy)j ©®

k1 and kg are reciprocal lattice base vectors defined in (9) for a
rectangular lattice, D,;, D, are the periodicities in the x, y directions,
respectively, po and ¢o are the interelement phase shift constants,
and k is the free-space wavenumber. The series has the slowest
convergence as the observation point approaches the source plane,
ie., as z — 0 (“on plane” case).

IV. NUMERICAL RESULTS

In this section, we present the results of applying the t-transform
to the partiai sums of the series given in (3), (4) and (6). TS provide a
comparison the results from Shanks’ transform and direct summation
of the series are also given. In order to stop the iteration process,
the convergence criterion used in [1] is employed. In this criterion,
€. is the convergence factor and it is provided as part of the input
specification. The reference source is taken to be at the origin.

Figs. 1-2 show the computation time (on a VAX 6350) vs. 1/e.
for the one-dimensional spatial and spectral domain Green's function
series, respectively. In each case the t-transform converges to machine
precision in 0.03 seconds. In comparison, the direct sum does not
converge and takes several minutes to run. The comiputation time
vs. 1/e. for the two-dimensional Green’s function series is shown in
Fig. 3. For ¢, = 107°, the t-transform converges to a high degree
of accuracy within 0.2 seconds whereas the direct sum takes 250
seconds and does not give comparable accuracy.

V. CONCLUSION

The t-transform significantly accelerates the convergence of the
series representing the one- and two-dimensional periodic Green’s
functions. The numerical results confirm that the t-transform is
effective even in the “on plane” case when the spectral domain series
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Fig. 2. Computation time versus 1/e. for the spatial domain Green’s
function series in (4) for (x,y) = (0.0A,0.61),d = 1.2, and A = 1.0m.
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Fig. 3. Computation time versus 1/e; for the spatial domain Green’s
function series in (6) for (2. y, z) = (0.6X,0.61,0.03),D; = Dy = 0.T5A,
po = go = 0.A = 1.0m.

have the slowest convergence. This results in a considerable savings
in computation time.
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Computer-Aided Design of a Singly-Matched
(S-M) Multiplexer with a Common Junction

Ji-An Gong and Wai-Kai Chen

Abstract—In this paper, the formulas based on scattering parameters
are presented for the design of a multiplexer composed of » — 1 channel
equalizers connected either in parallel or in series at a common junction
with a 1-Q) resistive generator and n — 1 channel complex loads. It
is known as the singly-matched (S8-M) multiplexer. A new two-stage
computer-aided design approach is developed for the S-M multiplexer.
A design example of a three-channel singly-matched multiplexer includ-
ing the designs of three individial S-M channel equalizers is given to
demonstrate the approach.

I. INTRODUCTION

Many multiplexer design techniques have been developed [1]-[3],
but none of them considers the complex load impedances. With recent
developments in solid-state technology, a pure resistive model of the
load is no longer an adequate representation.

In this paper, a multiplexer configuration consists of n — 1 channel
equalizers connected in either parallel or series at a common junction.
All the loads of the multiplexer are assumed to be complex, and
the generator is assumed to be connected in series with a 1-Q
resistor. A multiplexer with a resistive source and complex loads is
called a singly-matched (S-M) multiplexer. Formulas are presented
for either the parallel or series configuration with a common junction.
A new two-stage computer-aided procedure is developed for their
design. At the first stage, each channel equalizer is designed to
be a singly-matched so that the transfer of power from the 1-Q
resistive generator to the channel complex load is maximized over
a prescribed channel frequency band. This is known as a single
broad-band matching problem for which many papers have been
published [4]-[6]. Since the ladder structure is attractive not only
from a practical viewpoint, but also effective as an equalizer in
most applications, in this paper each channel equalizer is assumed
to be a two-port lossless ladder network. The S-M channel equalizer
is realized by optimization matching technique, thereby making it
easier to design a S-M equalizer having different types of responses
(Chebyshev or elliptic) and various passbands (lowpass, bandpass, or
highpass). At the second stage, by using the formulas and existing
optimization techniques. all the element values in the multiplexer
are modified until a good match is achieved at the common input
port over the entire transmission band. Since all the designs are
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